Troubleshooting Guide
This guide covers common issues you might encounter when working with Airtrain and how to resolve them.
API Connectivity Issues
API Key Authentication Errors
Symptoms:
- Error messages like "Authentication failed" or "Invalid API key"
- Status codes 401 or 403 from provider APIs
Solutions:
- Verify your API key is correct and not expired
- Ensure you're loading credentials correctly:
from airtrain.integrations.openai.credentials import OpenAICredentials
import os
# Create credentials
creds = OpenAICredentials(
openai_api_key=os.getenv("OPENAI_API_KEY"),
organization_id=os.getenv("OPENAI_ORG_ID"), # Optional
)
# Validate credentials
try:
creds.validate_credentials()
print("Credentials are valid")
except Exception as e:
print(f"Credential error: {e}")
- Check if you need organization IDs (for OpenAI) or other provider-specific details
- For OpenAI, verify you're using the correct key type (production vs test)
Rate Limiting Issues
Symptoms:
- Error messages mentioning "rate limit exceeded"
- Status code 429 from provider APIs
Solutions:
- Implement rate limiting in your Airtrain setup:
from airtrain.utils.rate_limiters import ExponentialBackoffLimiter
from airtrain.models import OpenAIModel
# Set up rate limiting
limiter = ExponentialBackoffLimiter(
initial_delay=1,
max_delay=60,
max_retries=5
)
# Use with model
model = OpenAIModel(
model_name="gpt-4-turbo",
rate_limiter=limiter
)
- Batch your requests when processing multiple items
- Consider using a model with lower usage costs
- Review your account limits with the provider and request increases if needed
Schema and Validation Errors
Input Schema Validation Failures
Symptoms:
- Errors like "Validation error for model..."
- Pydantic validation exceptions
Solutions:
- Check your input data against your schema requirements:
from airtrain.core.schemas import InputSchema
from pydantic import Field, ValidationError
class UserQuery(InputSchema):
query: str
max_results: int = Field(ge=1, le=50)
# Debug validation issues
try:
input_data = UserQuery(query="Search term", max_results=100) # Will fail validation
except ValidationError as e:
print(f"Validation error: {e}")
# Fix: Set value within allowed range
input_data = UserQuery(query="Search term", max_results=50)
- Add explicit type conversions if needed
- Use Pydantic's
model_validate
method to validate data:
try:
# Validate from dict
data_dict = {"query": "test", "max_results": "10"} # Note: string instead of int
input_data = UserQuery.model_validate(data_dict) # Pydantic will convert to int
print(f"Validated successfully: {input_data}")
except ValidationError as e:
print(f"Validation failed: {e}")
Tool Output Parsing Errors
Symptoms:
- Error messages about tools returning unexpected formats
- Issues with nested objects in tool responses
Solutions:
- Ensure your tools return objects that match the output schema:
from airtrain.core.schemas import OutputSchema
class SearchResult(OutputSchema):
results: list[dict]
total: int
# Correct
def search_function(query):
# ... search logic ...
return SearchResult(results=[{"title": "Result"}], total=1)
# Incorrect - will cause errors
def bad_search_function(query):
# Returns dict instead of SearchResult object
return {"results": [{"title": "Result"}], "total": 1}
- Use explicit schema validation in your tool implementations:
def search_function(query):
# ... search logic ...
results = get_search_results(query)
# Validate before returning
try:
return SearchResult(results=results, total=len(results))
except ValidationError:
# Fallback to empty results on validation error
return SearchResult(results=[], total=0)
Agent Behavior Issues
Agent Not Using Tools Correctly
Symptoms:
- Agent doesn't use available tools when expected
- Tools are called with incorrect parameters
Solutions:
- Ensure you're registering tools correctly with the agent:
from airtrain.core import Agent, Tool
# Create tools
calculator_tool = Tool(
name="calculator",
function=calculate,
input_schema=CalculatorInput,
output_schema=CalculatorOutput,
description="Calculate mathematical expressions (add, subtract, multiply, divide)"
)
# Register properly
agent = Agent(
name="math_helper",
model=model,
tools=[calculator_tool] # Add tools here
)
# Or add later
agent.add_tool(calculator_tool)
-
Check your tool descriptions - they should clearly explain:
- What the tool does
- When to use it
- Required parameters
- Example usage
-
Verify model capabilities (some models support tool calling better than others)
Memory Persistence Issues
Symptoms:
- Agent "forgets" information between sessions
- Context is lost between interactions
Solutions:
- Set up persistent memory:
from airtrain.core.memory import FileMemory
# Create persistent memory
memory = FileMemory(file_path="agent_memory.json")
# Store data
memory.store("user_preferences", {"theme": "dark"})
# Create agent with persistent memory
agent = Agent(name="assistant", model=model, memory=memory)
- Explicitly save memory after updates if using custom storage:
# After processing
response = agent.process("Remember I prefer dark mode")
agent.memory.save() # Explicitly save if needed
- Check file permissions if using file-based storage
Integration-Specific Issues
OpenAI Integration Issues
Common issues:
- "context_length_exceeded" errors
- Function/tool calling format errors
Solutions:
- Monitor and manage token usage:
from airtrain.models import OpenAIModel
model = OpenAIModel(
model_name="gpt-4-turbo",
max_tokens=1000 # Limit response tokens
)
# Track usage
response = agent.process("Long query...")
print(f"Tokens used: {response.usage.total_tokens}")
- For tool calling issues, ensure your schemas match OpenAI's expected format
- Check OpenAI model versions - some features might not be available in all models
Anthropic Integration Issues
Common issues:
- Messages exceeding Claude's context window
- Multi-modal content formatting errors
Solutions:
- Check compatible model versions for features you're using
- For multi-modal content, ensure images are properly encoded:
import base64
# Correctly encode images for Claude
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Use in multi-modal content
image_data = encode_image("image.jpg")
Performance Optimization
Slow Response Times
Symptoms:
- Responses from agents take longer than expected
- System feels unresponsive
Solutions:
- Use faster models for time-sensitive tasks:
# Slower but more capable
opus_model = AnthropicModel("claude-3-opus-20240229")
# Faster for simple tasks
haiku_model = AnthropicModel("claude-3-haiku-20240307")
- Implement request batching for multiple items
- Use caching for common queries:
from airtrain.utils.caching import ResponseCache
# Create cache
cache = ResponseCache(ttl=3600) # 1 hour TTL
# Use in processing
query = "What is Airtrain?"
cached_response = cache.get(query)
if cached_response:
return cached_response
else:
response = agent.process(query)
cache.set(query, response)
return response
- Consider asynchronous processing for non-blocking operations
Getting More Help
If you're still experiencing issues:
- Check the GitHub repository for known issues
- Join the GitHub Discussions to ask questions
- Review detailed error logs (enable DEBUG level logging)
from airtrain.utils.logging import configure_logging
# Enable detailed logging
configure_logging(
level="DEBUG",
file_path="airtrain_debug.log"
)
- Include relevant details when asking for help:
- Airtrain version
- Python version
- Error messages and stack traces
- Code snippets demonstrating the issue
- Steps to reproduce the problem